Mark J. Sarsfield,^a Musa Said,^b Mark Thornton-Pett,^a Lee A. Gerrard ^b and Manfred Bochmann *^b

^a School of Chemistry, University of Leeds, Leeds, UK LS2 9JT

Received 13th November 2000, Accepted 31st January 2001 First published as an Advance Article on the web 22nd February 2001

Zirconium tetrachloride reacted with $C_2H_4(Ph_2P=NSiMe_3)_2$ -1,2 1 under C–H activation to give the NCN chelate complex $ZrCl_3\{\kappa^3-N,C,N'-C_2H_3(Ph_2P=NSiMe_3)_2\}$, while the reaction with $C_5H_3N(Ph_2P=NSiMe_3)_2$ -2,6 gave an N-donor adduct. $Cp*TiCl_3$ reacts with trimethylsilyliminophosphines under dehalosilylation in all cases. In contrast to 1, the potentially C–N chelating benzylphosphinimine (4-Bu tC_6H_4CH_2)Ph $_2P=NSiMe_3$ undergoes dehalosilylation with $TiCl_4$ in preference to C–H activation, while prolonged reflux with $ZrCl_4$ affords the salt $[4-Bu^tC_6H_4CH_2P(Ph)_2NHSiMe_3]_2[Zr_2Cl_{10}]$. The molecular structures of the latter, $ZrCl_3\{C_2H_3(Ph_2PNSiMe_3)_2\}$, $C_5H_3N(Ph_2P=NTiCl_2Cp*)_2$ -2,6, and $TiCl_2Cp*\{N=PPh_2CH_2C_6H_4Bu^t-4\}$ have been determined by X-ray diffraction.

Introduction

Trimethylsilyl substituted phosphinimines $R_3P=NSiMe_3$ are known to react with Lewis acidic metal halides to give phosphinimido complexes *via* a dehalosilylation reaction (eqn. 1).

$$R_{3}P = N - SiMe_{3}$$

$$+ MCIL_{n}$$

$$R_{3}P = N - ML_{n} + Me_{3}SiCI \qquad (1)$$

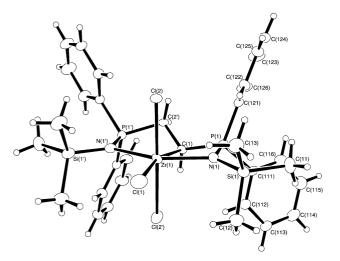
$$SiMe_{3}$$

$$R_{3}P = N - ML_{n} + Me_{3}SiCI \qquad (2)$$

Titanium tris(*t*-butyl)phosphinimido complexes formed in this way have proved to be highly active ethene polymerisation catalysts.² Alternatively, silyl phosphinimines may simply form *N*-donor adducts (eqn. 2), some of which have proved to be thermally surprisingly stable.^{1,3} As part of an exploration of the coordination chemistry of oligodentate P=N ligands and possible applications to catalysis,⁴ we recently reported that 1,2-bis[diphenyl(trimethylsilylimino)phosphoranyl]ethane 1 reacts with TiCl₄ not under dehalosilylation and formation of titanium imido complexes as expected, but undergoes C-H activation and HCl elimination to give the red-purple complex 2 (eqn. 3).⁵ We report here on the reaction of 1 and related

trimethylsilyliminophosphine ligands with $TiCl_4$, $ZrCl_4$ and $Cp*TiCl_3$ ($Cp* = \eta-C_5Me_5$).

Results and discussion


The reaction of 1,2-bis[diphenyl(trimethylsilylimino)phosphoranyl]ethane 1 with ZrCl₄ in dichloromethane at room temperature leads to the formation of a poorly soluble white precipitate. Comparison of the NMR data of this product with

those of 2 suggested that the analogous zirconium complex 3 had been formed (Scheme 1). The CH₂CH bridge gives rise to a

characteristic set of three multiplets in the ¹H NMR spectrum, at δ 1.07 (CH), 2.63 and 2.96, which each show coupling to two protons and two phosphorus atoms. As is typical for phosphinimine *N*-donor adducts, the ³¹P NMR chemical shifts are found at comparatively positive values, at δ 28.5 and 39.1, similar to those of aminophosphonium salts (*e.g.* compound **13** below: δ 40.4).

Compound 3 retains variable amounts of dichloromethane of crystallisation. The bulk material analysed for 3·CH₂Cl₂, while after some attempts of slow recrystallisation from dichloromethane crystals of 3·2CH₂Cl₂ were obtained which proved suitable for X-ray diffraction. The crystal structure (Fig. 1) confirmed the NMR assignments. Selected bond distances and angles are collected in Table 1. Unfortunately the crystal suffered from solvent loss during data collection, in addition to disorder problems (see Experimental section) and did not give high quality diffraction data. Zirconium is in a distorted octahedral environment containing a four- and a five-membered C–N chelate ring. The Zr–Cl(1) bond *trans* to the zirconium–carbon bond is slightly longer [2.477(2) Å] than

^b School of Chemical Sciences, University of East Anglia, Norwich, UK NR4 7TJ

Fig. 1 Molecular structure of ZrCl₃{Me₃SiNP(Ph₂)CHCH₂P(Ph₂)-NSiMe₃} **3**, showing the atomic numbering scheme. Ellipsoids are drawn at 40% probability. Note that the CHCH₂ backbone is disordered 50:50 over two positions, one of which is shown.

the other two Zr–Cl distances [2.4580(13) Å]. By comparison, the Zr–C(1) distance is long, 2.407(11) Å. As a consequence of disorder only average Zr–N bond distances can be given, 2.201(4) Å. Both nitrogen atoms in 3 are trigonal planar.

Initial ethene polymerisation attempts with compound 3 in toluene activated with methylaluminoxane (MAO), (MeAlO)_n (nominal Al: Zr ratio 1000:1), showed encouraging activity (50 °C, 1 bar). However, recrystallised 3 proved to be inactive, and we ascribe the observed catalytic activity to an impurity which could not be identified.

By contrast to the C–H activation leading to compound 3, the reaction of 1 with Cp*TiCl₃ proceeds cleanly with dechlorosilylation, to give the titanium phosphinimido complex C_2H_4 -{Ph₂P=NTiCl₂Cp*}₂-1,2 **4** as orange-red crystals. The symmetric structure is evident from the observation in the ¹H NMR spectrum of a simple doublet for the C_2H_4 bridge (δ 2.87, J_{HP} = 2.4 Hz). The linear transoid geometry was confirmed by X-ray diffraction which allowed the identification of all heavy atoms, although the data were of insufficient quality to be discussed here further.

Alkylation of compound 4 with MeMgCl in diethyl ether leads cleanly to $C_2H_4\{Ph_2P=NTiMe_2Cp^*\}_2-1,2$ 5. Mixtures of 4 activated with methylaluminoxane (MAO, Al : Ti = 1000 : 1) in toluene at 60 °C under 1 bar ethene show modest polymerisation activity [$ca. 5 \times 10^3$ g polyethylene (PE) (mol Ti)⁻¹ h⁻¹ bar⁻¹], while equimolar mixtures of 5 and $B(C_6F_5)_3$ only gave traces of polymer.

Dehalosilylation is also observed on exposure of the potentially tridentate bis(iminophosphino)pyridine $C_5H_3N-(Ph_2P=NSiMe_3)_2\text{-}2,6$ to $Cp*TiCl_3$ in dichloromethane at room temperature, to give orange crystalline $C_5H_3N\{Ph_2P=NTiCl_2Cp^*\}_2\text{-}2,6\cdot CH_2Cl_2$ (Scheme 2). The molecular structure of 7 is shown in Fig. 2. The molecule contains nearlinear Ti–N–P moieties, with an average Ti–N–P angle of $160.5(2)^\circ$. The Ti–N and P=N distances of, on average, 1.793(2) and 1.578(2) Å, respectively, correspond closely to those found in the parent complex, $CpCl_2TiN=PPh_3$. There is no coordination to the pyridine N atom.

By contrast, the reaction of compound **6** with ZrCl₄ under similar conditions leads to a product analysing for $C_5H_3N-\{Ph_2P=N(SiMe_3)ZrCl_4\}_2-2,6\cdot2CH_2Cl_2$ **8**·2CH₂Cl₂. Although crystals suitable for X-ray diffraction could not be grown, the composition of **8** is confirmed by the NMR spectra, *e.g.* the ³¹P NMR chemical shift of δ 39.5. Heating **8**·2CH₂Cl₂ to 180 °C for 3 h failed to induce dehalosilylation but allowed the recovery of solvate-free **8**.

In an attempt to probe the extent of C-H activation of alkyl-

Table 1 Selected bond length (Å) and angles (°)

$ZrCl_3\{C_2H_3(Ph_2=NS)\}$	SiMe ₂) ₂ } 3		
Zr(1)-N(1)	2.201(4)	$Zr(1)$ – $Cl(2')^a$	2.4580(13)
Zr(1)– $C(1)$	2.407(11)	N(1)-P(1)	1.618(5)
Zr(1)– $Cl(2)$	2.4580(13)	Si(1)– $C(13)$	1.863(6)
Zr(1)– $Cl(1)$	2.477(2)	P(1)–C(2)	1.825(10)
N(1)=Si(1)	1.754(5)	P(1)–C(121)	1.806(5)
P(1)-C(1)	1.771(9)	C(1)– $C(121)C(1)–C(2)^a$	1.527(12)
P(1)=C(1) P(1)=C(11)	1.809(5)	C(1)– $C(2)$	1.327(12)
r(1)=C(11)	1.809(3)		
$N(1)^a - Zr(1) - N(1)$	145.5(3)	$N(1)^a - Zr(1) - C(1)$	82.9(3)
N(1)– $Zr(1)$ – $Cl(2)$	90.59(11)	N(1)– $Zr(1)$ – $C(1)$	63.2(3)
Cl(2)– $Zr(1)$ – $Cl(2)$ ^a	177.15(10)	C(1)– $Zr(1)$ – $Cl(2)$	101.4(2)
$C(1)^a - Zr(1) - Cl(2)$	81.4(2)	$N(1)$ – $Zr(1)$ – $Cl(2)^a$	90.25(11)
C(1) $Zr(1)$ $C(2)$ $C(1)$ $-Zr(1)$ $-Cl(1)$	165.9(2)	N(1)– $Zr(1)$ – $Cl(1)$	107.26(14)
P(1)=N(1)=Si(1)	126.8(3)	Cl(2)– $Zr(1)$ – $Cl(1)$	88.57(5)
	124.7(3)		108.4(2)
Si(1)-N(1)-Zr(1)		P(1)-N(1)-Zr(1)	
C(1)-P(1)-C(111)	115.9(4)	N(1)-P(1)-C(1)	91.0(4)
C ₅ H ₃ N(Ph ₂ PNTiCl ₂	Cn*) -2 6 7		
		TE'(1) CI(1)	2.20.40.(0)
Ti(1)–N(1)	1.794(2)	Ti(1)–Cl(1)	2.2849(8)
Ti(1)–Cl(2)	2.3091(8)	Ti(1)–C(2)	2.334(3)
Ti(1)-C(3)	2.345(3)	Ti(1)–C(4)	2.377(3)
Ti(1)–C(1)	2.412(3)	Ti(1)–C(5)	2.421(3)
N(1)-P(1)	1.578(2)	P(1)–C(121)	1.800(3)
P(1)-C(111)	1.804(3)	P(1)–C(11)	1.823(3)
C(11)-N(12)	1.340(3)	Ti(2)-N(2)	1.791(2)
C(13)-P(2)	1.824(2)	Ti(2)-Cl(3)	2.3116(8)
Ti(2)-Cl(4)	2.3044(9)	N(2)-P(2)	1.578(2)
(-)(-)	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- (-) - (-)	
Cl(1)-Ti(1)-Cl(2)	102.99(3)	N(1)-Ti(1)-Cl(1)	102.40(8)
P(1)-N(1)-Ti(1)	155.4(2)	N(1)-Ti(1)-Cl(2)	101.81(8)
N(1)-P(1)-C(111)	112.14(11)	N(1)-P(1)-C(121)	113.08(12)
N(1)–P(1)–C(11)	111.69(12)	C(16)–C(11)–P(1)	123.0(2)
N(12)–C(11)–P(1)	114.1(2)	C(10) - C(11) - C(13)	117.7(2)
11(12) 0(11) 1(1)	11(2)	0(11) 11(12) 0(10)	11///(2)
TiCl ₂ Cp*{N=PPh ₂ C	CH ₂ C ₆ H ₄ Bu ^t -4} 12		
Ti(1)-N(1)	1.7737(16)	Ti(1)-Cl(1)	2.3085(5)
Ti(1) -Cl(2)	2.3158(5)	P(1)–C(11)	1.8018(19)
N(1)-P(1)	1.5841(16)	P(1)–C(31)	1.8170(18)
P(1)–C(21)	1.8066(18)	r(1)-C(31)	1.01/0(10)
r(1)=C(21)	1.0000(10)		
N(1)-Ti(1)-Cl(1)	104.39(5)	N(1)-Ti(1)-Cl(2)	101.21(5)
Cl(1)-Ti(1)-Cl(2)	101.38(2)	N(1)-P(1)-C(11)	111.10(9)
			108.59(8)
P(1)–N(1)–Ti(1)	165.69(11)	C(11)-P(1)-C(21)	105.75(9)
N(1)-P(1)-C(21)	111.69(8)	C(11)-P(1)-C(31)	103.73(9)
N(1)-P(1)-C(31)	112.74(9)		
[4-Bu ^t C ₆ H ₄ CH ₂ P(Pl	n),NHSiMe.1.[7r	Cl.,] 13	
			2 200(2)
Zr(1)–Cl(5)	2.371(2)	Zr(1)–Cl(2)	2.388(2)
Zr(1)–Cl(4)	2.407(2)	Zr(1)-Cl(1)	2.431(2)
Zr(1)–Cl(3)	2.615(2)	Zr(1)–Cl(3)*	2.640(2)
Cl(3)-Zr(1)*	2.640(2)	P(1)-N(1)	1.635(5)
P(1)–C(18)	1.790(6)	P(1)– $C(12)$	1.792(6)
P(1)–C(1)	1.823(6)	Si(1)-N(1)	1.772(5)
O1/5) F1 /1) S1/5	100.51(0)	01/5 5 (1) 5 (1)	00.0000
Cl(5)–Zr(1)–Cl(2)	100.51(8)	Cl(5)–Zr(1)–Cl(4)	93.68(8)
Cl(2)– $Zr(1)$ – $Cl(4)$	92.09(7)	Cl(5)– $Zr(1)$ – $Cl(1)$	92.54(8)
Cl(2)– $Zr(1)$ – $Cl(1)$	89.28(7)	Cl(4)-Zr(1)-Cl(3)	173.28(7)
Cl(5)-Zr(1)-Cl(3)	89.62(6)	Cl(2)-Zr(1)-Cl(3)	169.56(6)
Cl(4)-Zr(1)-Cl(3)	89.74(6)	Cl(1)-Zr(1)-Cl(3)	87.75(6)
Cl(5)-Zr(1)-Cl(3)*	166.74(6)	Cl(2)-Zr(1)-Cl(3)*	92.71(6)
Cl(4)-Zr(1)-Cl(3)*	86.76(7)	Cl(1)-Zr(1)-Cl(3)*	86.60(6)
Cl(3)–Zr(1)–Cl(3)*	77.12(5)	Zr(1)– $Cl(3)$ – $Zr(1)*$	102.88(5)
N(1)–P(1)–C(18)	108.8(3)	N(1)–P(1)–C(12)	111.7(3)
C(18)-P(1)-C(12)	110.3(3)	N(1)-P(1)-C(1)	110.5(3)
C(18)-P(1)-C(1)	108.1(3)	C(12)-P(1)-C(1)	107.3(3)
			()
^a Symmetry relation	. 1		

phosphinimines with formation of CPN chelate structures analogous to those of **2** and **3**, the reaction of the benzyl phosphinimine 4-Bu^tC₆H₄CH₂P(Ph)₂=NSiMe₃ **9** with titanium and zirconium halides was explored (Scheme 3). Unlike **1**, the reaction of **9** with TiCl₄ failed to give a chelate complex of type **10** but led instead to dehalosilylation with formation of **11** as a poorly soluble orange microcrystalline solid in high yield.

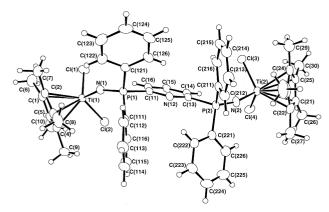


Fig. 2 Molecular structure of $C_5H_3N\{Ph_2P=NTiCl_2Cp^*\}_2-2.6$, 7.

$$\begin{array}{c} C(3) \\ C(4) \\ C(4) \\ C(3) \\ C(5) \\ C(6) \\ C(6) \\ C(7) \\ C(7) \\ C(11) \\ C(22) \\ C(24) \\ C(25) \\ C(25) \\ C(25) \\ C(25) \\ C(25) \\ C(14) \\ C(13) \\ C(14) \\ C(15) \\ C(15) \\ C(15) \\ C(15) \\ C(14) \\ C(15) \\$$

Fig. 3 Molecular structure of $TiCl_2Cp^*{N=PPh_2CH_2C_6H_4Bu^t-4} \cdot C_6H_5Me$ 12· C_6H_5Me).

Similarly, the reaction of **9** with Cp*TiCl₃ affords orange $TiCl_2Cp*\{N=PPh_2CH_2C_6H_4Bu^t-4\}$ **12**. The structure of **12** (Fig. 3) shows a Ti–N bond of 1.7737(16) Å and a near-linear Ti–N–P arrangement, with an angle of 165.69(11)°.

Scheme 2

A different course of reaction was followed when compound **9** was treated with $ZrCl_4$. A product derived from dehalosilylation was not observed. Refluxing the mixture in dichloromethane for 5 h followed by crystallisation led to the isolation of a colourless material which was identified as a salt of the decachlorodizirconate dianion, [4-Bu^tC₆H₄CH₂P(Ph)₂-NHSiMe₃]₂[Zr_2Cl_{10}] **13**, in moderate yield. The compound shows a ³¹P NMR signal at δ 40.4, as expected of a phosphonium cation. The structure of **13** was confirmed by X-ray diffraction (Fig. 4). The [Zr_2Cl_{10}]² anion is rare and appears

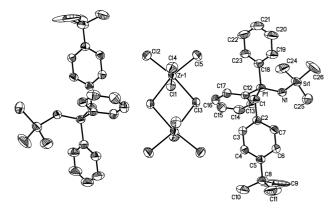


Fig. 4 Crystal structure of $[4-Bu^4C_6H_4CH_2P(Ph)_2NHSiMe_3]_2[Zr_2Cl_{10}]$ 13

to have been crystallographically characterised in only a few cases. Typically, the Zr–Cl distances to the bridging chlorine atoms are *ca.* 0.2 Å longer than the terminal Zr–Cl bonds. The bridge is slightly unsymmetric, with Zr–Cl(3) and Zr–Cl(3*) bond lengths of 2.615(2) Å and 2.640(2) Å, respectively. There is no indication for hydrogen bonding between cations and anion.

There was evidence for a second species in solution, with a ^{31}P NMR shift of δ 31.45, which was suspected to be the metallated compound $ZrCl_3\{4-Bu^tC_6H_4CHP(Ph)_2NSiMe_3\}$ 14. The formation of such a product would provide the HCl required for the generation of 13 according to eqn. (4), although in view of the almost 40% yield of 13 hydrolysis by traces of moisture could not be ruled out. However, the reaction of Li[4-Bu^t-C₆H₄CHP(Ph)₂NSiMe₃] with $ZrCl_4$ (eqn. 5) affords a product with a very similar ^{31}P NMR chemical shift (δ 31.92). Although

4 9 +
$$4 \text{ ZrCl}_4$$
 2 Ph_2 PN—SiMe₃ + 13 Cl_3

an analytically pure sample of **14** could not be obtained, the spectroscopic data are in agreement with the suggested structure. Similarly, the reaction of $\text{Li}[4\text{-Bu}^{\text{t}}\text{C}_{6}\text{H}_{4}\text{CHP}(\text{Ph})_{2}\text{NSiMe}_{3}]$ with TiCl_{4} gives $\text{TiCl}_{3}\{4\text{-Bu}^{\text{t}}\text{C}_{6}\text{H}_{4}\text{CHP}(\text{Ph})_{2}\text{NSiMe}_{3}\}$ **10** mentioned earlier; the compound was isolated as a light yellow powder.

Conclusion

Chelating bis(trimethylsilylimino)phosphines undergo C–H activation in preference to dehalosilylation with both titanium and zirconium tetrachloride, to give products containing [C–N]⁻ chelate rings. In all other cases ZrCl₄ forms *N*-donor adducts or salts. The (phosphinimine)ZrCl₄ complexes are thermally stable and cannot be converted into dehalosilylation products. By contrast, TiCl₄ shows a preference for dehalosilylation to give phosphinimido complexes, a reaction pathway that is exclusively followed by the less Lewis acidic Cp*TiCl₃. The potentially tridentate ligand C₂H₄(Ph₂P=NSiMe₃)₂-1,2 1 has a significantly greater tendency towards C–H activation than monoiminophosphines; the latter require lithiation to give [C–N]⁻ chelate complexes.

Experimental

All manipulations were performed under a dinitrogen atmosphere unless specified using Schlenk techniques. Solvents were distilled under N₂ over sodium-benzophenone (thf), sodium (toluene), sodium-potassium alloy [diethyl ether, light petroleum (bp 40-60 °C)], or CaH₂ (dichloromethane). NMR solvents were dried over activated molecular sieves and degassed through several freeze-thaw cycles. NMR spectra were recorded on Bruker DPX300 or DRX500 spectrometers. Chemical shifts are reported in ppm and referenced to residual solvent resonances (¹H, ¹³C) or to external 85% H₃PO₄ (³¹P). Bis(diphenylphosphino)methane (dppm), azidotrimethylsilane and 2,6-difluoropyridine were used as purchased, ZrCl₄ was freshly sublimed under nitrogen before use (400-450 °C, 1 atm), $Cp*TiCl_3$, $C_2H_4(Ph_2P=NSiMe_3)_2-1,2$ 1 and C_5H_3N-1 (Ph₂P=NSiMe₃)₂-2,6 6⁴ were prepared according to literature procedures.

Preparations

ZrCl₃{**CHCH**₂(**Ph**₂**PNSiMe**₃)₂} **3.** A mixture of compound **1** (2.50 g, 4.36 mmol), **ZrCl**₄ (1.00 g, 4.29 mmol) and dichloro-

methane (40 cm³) was stirred at room temperature for 17 h. A milky white precipitate developed which was allowed to settle for 1 h and filtered off. The white residue was washed with dichloromethane (40 cm³) and dried in vacuo to give 3·CH₂Cl₂, yield 2.20 g (2.58 mmol, 60%). Crystals suitable for X-ray diffraction were obtained from warm dichloromethane. ¹H NMR $(CD_2Cl_2, 20 \,^{\circ}C)$: $\delta 0.13$ (s, 9H, SiMe₃), 0.14 (s, 9H, SiMe₃), 1.07 1H, CH₂, $J_{HH} = 14.2$, 4.7, $J_{HP} = 6.0$, 1.7), 2.96 (d,d,d,d, 1H, CH_2 , $J_{HH} = 14.2$, 14.2, $J_{HP} = 17.4$, 10.5 Hz) and 7.93–7.35 (m, 20H, Ph). $^{13}\text{C-}\{^1\text{H}\}$ NMR (CD₂Cl₂, 20 °C): δ 2.9 (d, SiMe₃, $J_{CP} = 3.3$), 3.9 (d, SiMe₃, $J_{CP} = 3.6$), 20.8 (d,d CH, $J_{CP} = 71.8$, 9.9), 36.0 (d, CH_2 , $J_{CP} = 77.9$), 124.7 (d, *ipso-C* of Ph_2 , $J_{\text{CP}} = 86.9$), 125.6 (d, *ipso-C* of Ph, $J_{\text{CP}} = 90.3$), 129.0 (d, *m*-C of Ph, $J_{CP} = 12.4$), 129.1 (d, m-C of Ph, $J_{CP} = 11.5$), 129.2 (d, m-C of Ph, $J_{CP} = 12.7$), 129.3 (d, m-C of Ph, $J_{CP} = 12.7$), 131.0 (d, o-C of Ph, $J_{CP} = 10.4$), 132.1 (d, p-C of Ph, $J_{CP} = 3.0$), 132.8 (d, p-C of Ph, $J_{CP} = 3.0$), 133.3 (d, p-C of Ph, $J_{CP} = 2.0$), 133.4 (d, p-C of Ph, $J_{CP} = 2.2$), 133.4 (d, o-C of Ph, $J_{CP} = 10.4$), 133.7 $(d, o-C \text{ of Ph}, J_{CP} = 10.6), 134.0 (d, o-C \text{ of Ph}, J_{CP} = 9.8) \text{ and } 136.2$ (d,d, *ipso-C* of Ph, $J_{CP} = 80.1$, 1.8 Hz). ³¹P NMR (CD₂Cl₂, 20 °C): δ 28.5 (d, J_{PP} = 81.9) and 39.1 (d, J_{PP} = 81.9 Hz). Calc. for $C_{32}H_{41}Cl_3N_2P_2Si_2Zr\cdot CH_2Cl_2$: C, 46.4; H, 5.1; N, 3.3%. Found: C, 47.0; H, 5.3; N, 3.8%.

C₂H₄{Ph₂P=NTiCl₂Cp*}₂-1,2 4. A solution of compound 1 (0.50 g, 1.73 mmol) and Cp*TiCl₃ (1.00 g, 3.45 mmol) in dichloromethane (30 cm³) was stirred at room temperature for 16 h. The solution was filtered, reduced in volume (*ca.* 20 cm³) and placed in the freezer overnight. Bright orange-red crystals of C₂H₄{Ph₂P=NTiCl₂Cp*}₂-1,2 **4** were isolated, yield 1.45 g (1.55 mmol, 90%). ¹H NMR (CD₂Cl₂, 20 °C): δ 1.98 (s, 30 H, Cp*), 2.87 (d, 4H, CH₂, J_{HP} = 2.4 Hz), 7.50 (m, 8H, *o*-H of Ph), 7.58 (m, 4H, *p*-H of Ph) and 7.78 (m, 8H, *m*-H of Ph). ¹³C NMR (CD₂Cl₂, 20 °C): δ 12.1 (s, C₅Me₅), 22.7 (vt, 2CH₂, J_{CP} = 31.7), 127.2 (s, C_5 Me₅), 129.0 (t, *o*-C of Ph, J_{CP} = 6.4), 129.8 (d, *ipso*-C of Ph, J_{CP} = 97.9), 132.9 (d, *m*-C of Ph, J_{CP} = 5.3 Hz) and 132.4 (s, *p*-C of Ph). ³¹P NMR (CD₂Cl₂, 20 °C): δ 6.6. Calc. for C₂₃H₂₇Cl₂NPTi: C, 59.1; H, 5.8; Cl, 15.2; N, 3.0%. Found: C, 58.8; H, 5.8; Cl, 15.0; N, 3.2%.

 $C_2H_4\{Ph_2P=NTiMe_2Cp^*\}_2-1,2$ 5. This compound was prepared from 1 (0.50 g, 1.73 mmol) and Cp*TiCl₃ (1.00 g, 3.45 mmol) in a one-pot procedure. A dichloromethane solution of 4 was prepared as described above and the solvent replaced by thf (30 cm³). The solution was cooled to -78 °C and treated with MeMgCl (2.6 cm³, 6.9 mmol, 3 M solution in thf). The orange suspension slowly turned pale yellow on warming to room temperature. After 3 h the solvent was removed and the product extracted into 50 : 50 toluene-light petroleum ($2 \times 30 \text{ cm}^3$). The combined extracts were cooled to $-20\,^{\circ}\text{C}$ overnight to afford 5 as a crystalline material (0.35 g, 24%). ^{1}H NMR ($C_{6}D_{6}$, 20 $^{\circ}C$): δ 0.63 (s, 12H, TiMe), 1.95 (s, 30 H, Cp*), 3.01 (d, 4H, 2CH₂, J = 2.0 Hz), 7.02 (m, 12H, o,p-H of Ph) and 7.85 (m, 8H, m-H of Ph). ¹³C NMR (C_6D_6 , 20 °C): δ 12.0 (s, C_5Me_5), 24.5 ("t", $2CH_2$, $J_{CP} = 32.1$), 43.2 (TiMe), 119.3 (s, C_5Me_5), 129.0 (t, o-C of Ph, $J_{CP} = 5.7$), 131.5 (d, m-C of Ph, $J_{CP} = 4.5$), 131.7 (s, p-C of Ph) and 134.0 (d, *ipso-*C of Ph, $J_{CP} = 95.0$ Hz). ³¹P NMR $(C_6D_6, 20 \,^{\circ}C)$: $\delta - 6.6$. Calc. for $C_{25}H_{33}NP_2Ti$: C, 70.4; H, 7.8; N, 3.3%. Found: C, 70.3; H, 8.0; N, 3.0%.

 $C_5H_3N\{Ph_2P=NTiCl_2Cp^*\}_2-2,6$ 7. A solution of $C_5H_3-N(Ph_2P=NSiMe_3)_2-2,6$ 6⁴ (1.07 g, 1.73 mmol) and Cp^*TiCl_3 (1.00 g, 3.45 mmol) in dichloromethane (30 cm³) was stirred at room temperature for 16 h. The solution was filtered, reduced in volume to ca. 20 cm³ and placed in a freezer overnight. Bright orange crystals of $C_5H_3N\{Ph_2P=NTiCl_2Cp^*\}_2-2,6\cdot CH_2Cl_2$ 7· CH_2Cl_2 were isolated, yield 1.49 g (1.40 mmol, 81%). ¹H NMR (CD_2Cl_2 , 20 °C): δ 1.97 (s, 30 H, C_5Me_5), 7.33 (m, 8H, o-H of Ph), 7.53 (m, 12H, m,p-H of Ph), 8.17 (m, 1H, p-H of

Table 2 Crystal data of iminophosphorane complexes

	3·2CH ₂ Cl ₂	7	12	13
Formula	C ₃₂ H ₄₁ Cl ₃ N ₂ P ₂ Si ₂ Zr·2CH ₂ Cl ₂	$C_{50}H_{55}Cl_{6}N_{3}P_{2}Ti_{2}$	C ₄₀ H ₄₈ Cl ₂ NPTi	C ₅₂ H ₇₀ Cl ₁₀ N ₂ P ₂ Si ₂ Zr ₂
M	939.21	1068.41	692.56	1374.13
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic
Space group	C2/c	$P\bar{1}$	$P2_1/n$	$P2_1/n$
a/Å	22.6760(10)	12.0929(2)	19.5778(5)	16.729(3)
b/Å	9.5021(5)	13.4161(4)	10.3318(3)	11.509(2)
c/Å	21.3807(7)	16.3861(4)	19.8983(4)	17.448(4)
a/°	. ,	84.4990(14)	` '	, ,
β/°	113.031(3)	80.911(2)	112.136(2)	98.13(3)
γ / °	. ,	81.787(2)	` '	` ´
<i>U</i> /Å ³	4239.7(3)	2590.85(11)	3728.24(16)	3325.5(11)
Z	4	2	4	2
μ/mm^{-1}	0.86	0.716	0.444	0.832
Independent/				
observed reflections	4113/3582	10152/8694	7286/6403	5572/3623
$R_{ m int}^{a}$	0.0491	0.0595	0.0627	0.0422
$R1 [I > 2\sigma(I)]$	0.0661	0.0484	0.0427	0.0544
wR2 (all data)	0.1472	0.1314	0.1193	0.2193
$ F_o^2 - F_o^2 $ (mean) $ \Sigma F_o^2 $.	J	0.121.	011170	0.2 133

py) and 8.79 (m, 2H, *m*-H of py). ¹³C NMR (CD₂Cl₂, 20 °C): δ 13.0 (s, C₅ Me_5), 127.9 (s, C₅Me₅), 128.8 (d, o-C of Ph, $J_{\text{CP}} = 13.6$), 130.3 (d, ipso-C of Ph, $J_{\text{CP}} = 101.1$), 131.4 (d,d, m-C of py, $J_{\text{CP}} = 21.9$, 3.0), 132.6 (s, p-C of Ph), 132.9 (d, m-C of Ph, $J_{\text{CP}} = 10.6$), 137.8 (t, p-C of py, $J_{\text{CP}} = 8.7$) and 156.2 (d,d, ipso-C of py, $J_{\text{CP}} = 128.3$, 18.1 Hz). ³¹P NMR (CD₂Cl₂, 20 °C): δ -5.2. Calc. for C₄₉H₅₃Cl₄N₃P₂Ti₂·CH₂Cl₂: C, 56.2; H, 5.2; N, 3.9%. Found: C, 56.0; H, 5.2; N, 3.4%.

 $C_5H_3N\{Ph_2P=N(SiMe_3)ZrCl_4\}_2-2,6$ 8. A mixture of $ZrCl_4$ (0.376 g, 1.607 mmol) and compound **6** (0.500 g, 0.834 mmol) in dichloromethane (20 cm³) was heated at 40 °C for 30 min and left to stir at room temperature for 16 h. Some solid precipitate was removed by filtration. The filtrate was concentrated to provide $C_5H_3N\{Ph_2P=N(SiMe_3)ZrCl_4\}_2-2,6\cdot 2CH_2Cl_2$ 8·2CH₂Cl₂, yield 0.65 g (0.6 mmol, 72%). Heating this compound at 180 °C for 3 h gave unsolvated 8 only. 1 H NMR (CD₂Cl₂, 20 $^{\circ}$ C): δ 0.40 (s, 18 H, SiMe₃), 7.70 (m, 12H, o- and p-H of Ph), 7.95 (m, 2H, m-H of py), 8.12 (m, 8H, m-H of Ph) and 8.61 (m, 1H, p-H of py). 13 C NMR (CD₂Cl₂, 20 °C): δ 4.8 (SiMe₃), 124.1 (d, *ipso*-C of Ph, $J_{CP} = 96.6$), 130.4 (d, o-C of Ph, $J_{CP} = 13.6$), 133.1 (d,d, m-C of py, $J_{CP} = 21.1$, 2.3), 134.1 (d, m-C of Ph, $J_{CP} = 12.1$), 135.5 (d, *p*-C of Ph, $J_{CP} = 3.0$), 145.2 (t, *p*-C of py, $J_{CP} = 9.1$) and 158.1 (d,d, *ipso*-C of py, $J_{CP} = 122.3$, 11.3 Hz). ³¹P NMR $(CD_2Cl_2, 20 \,^{\circ}C)$: δ 39.5. **8**·2CH₂Cl₂. Calc. for $C_{35}H_{41}Cl_{8}$ -N₃P₂Si₂Zr₂·2CH₂Cl₂: C, 36.9; H, 3.7; Cl, 30.2; N, 3.6%. Found: C, 37.0; H, 3.6; Cl, 30.4; N, 3.4%. **8**. Calc. for C₃₅H₄₁Cl₈-N₃P₂Si₂Zr₂: C, 38.6; H, 3.8; Cl, 26.1; N, 3.9%. Found: C, 38.0; H, 3.8; Cl, 26.6; N, 4.1%.

4-Bu^tC₆H₄CH₂P(Ph)₂=NSiMe₃ **9.** To a solution of freshly distilled 4-Bu^tC₆H₄CH₂PPh₂ (3.20 g, 9.64 mmol) in toluene (50 cm³) was added trimethylsilyl azide (2.78 g, 24.10 mmol) at room temperature. The mixture was heated to reflux for 18 h, the volatiles were removed, and light petroleum was added (*ca*. 30 cm³). Crystals were grown at -25 °C over a period of two days, yield 2.5 g (6.0 mmol, 62%). ¹H NMR (C₆D₆, 20 °C, 300.13 MHz): δ 0.43 (s, 9H, SiMe₃), 1.23 (s, 9H, CMe₃), 3.46 (d, J_{HP} = 13.1 Hz, 2H, CH₂) and 7.11–7.71 (m, 14H, Ph). ¹³C-{¹H} NMR (C₆D₆, 20 °C, 75.46 MHz): δ 4.34 (s, 3C, SiMe₃), 31.16 (s, 3C, CMe₃), 34.13 (s, CMe₃), 39.04 (d, J_{CP} = 68.7 Hz, CH₂) and 124.98–149.09 (aryl). ³¹P NMR (C₆D₆, 20 °C, 121.49 MHz): δ -0.8. Calc. for C₂₆H₃₄NPSi: C, 74.4; H, 8.2; N, 3.3%. Found: C, 74.5; H, 8.4; N, 3.3%.

 $TiCl_3$ {4-Bu¹C₆H₄CHP(Ph)₂=NSiMe₃} 10. In a one-pot procedure, to a solution of compound 9 (0.43 g, 1.02 mmol) in toluene (20 cm³) was added dropwise at -78 °C BuⁿLi (0.64

cm³, 1.02 mmol) over a period of 10 min. The solution was warmed to ambient temperature, stirred for 2 h, and added dropwise to a cold ($-70\,^{\circ}\text{C}$) solution of TiCl₄ (0.19 g, 1.02 mmol) in toluene ($20\,\text{cm}^3$). After warming to room temperature and stirring for 2 h the mixture was filtered. The filtrate was concentrated to 10 cm³ and 10 cm³ of light petroleum were added to give a light yellow powdery solid, yield 0.28 g (0.49 mmol, 48%). ¹H NMR (CD₂Cl₂, 20 °C): δ 0.29 (s, 9H, SiMe₃), 1.06(s, 9H, CMe₃), 3.65 (br, H, CH) and 6.91–7.70 (m, 14H, Ph). ³¹P NMR (CD₂Cl₂, 20 °C): δ 5.14.

TiCl₃{4-Bu¹C₆H₄CH₂P(Ph)₂=N} 11. To a solution of compound 9 (1.10 g, 2.62 mmol) in toluene (30 cm³) at -78 °C was added dropwise a solution of TiCl₄ (0.50 g, 2.62 mmol) in toluene (3.5 cm³) over a period of 10 min. The resulting light orange solution was allowed to warm to ambient temperature and stirred for 3 h. Solvent was reduced to 5 cm³ and light petroleum (30 cm³) added to yield an orange precipitate which was collected and dried overnight under vacuum, yield 1.90 g (3.8 mmol, 84%). ¹H NMR (C₆D₆, 20 °C): δ 1.14 (s, 9H, CMe₃), 3.16 (d, J_{HP} = 13.21 Hz, 2H, CH₂) and 6.93–7.53 (m, 14H, Ph). ¹³C-{¹H} NMR (C₆D₆, 20 °C): δ 31.01 (s, CMe₃), 34.28 (s, CMe₃), 36.11 (d, J_{CP} = 60.4 Hz, CH₂) and 124.83–151.11 (aryl). ³¹P NMR (C₆D₆, 20 °C, 121.49 MHz): δ 11.6. Calc. for C₂₃H₂₅-Cl₃NPTi: C, 55.2; H, 5.0; N, 2.8%. Found: C, 54.5; H, 5.3; N, 2.9%.

TiCl₂Cp*{N=PPh₂CH₂C₆H₄Bu^t-4}·C₆H₅Me 12·C₆H₅Me. A solution of compound 9 (1.45 g, 3.46 mmol) and Cp*TiCl₃ (1.0 g, 3.46 mmol) in toluene (20 cm³) was heated at 110 °C overnight. The mixture was concentrated to 5 cm³ and light petroleum added to yield an orange precipitate which was purified by recrystalisation from hot toluene (1 g cm⁻³) to yield crystals of 12·C₆H₅Me after 3 h, yield 1.7 g (2.45 mmol, 71%). ¹H NMR (C₆D₆, 20 °C): δ 1.13(s, 9H, CMe₃), 2.07(s, 15H, C₅Me₅), 2.13(s, 3H, Me of toluene), 3.16 (d, J_{HP} = 14.2 Hz, 2H, CH₂) and 6.99–7.90 (m, 19H, aryl). ¹³C-{¹H} NMR (C₆D₆, 20 °C): δ 12.85 (s, 5C, C₅Me₅), 21.17 (s, 1C, Me of toluene), 31.06 (s, 3C, CMe₃), 34.14 (s, 1C, CMe₃), 37.04 (d, J_{CP} = 64.1 Hz, CH₂) and 125.39–149.70 (aryl). ³¹P NMR (C₆D₆, 20 °C): δ 2.5. Calc. for C₃₃H₃₈Cl₂NPTi·C₇H₈: C, 69.4; H, 7.0; Cl, 10.2; N, 2.0%. Found: C, 69.5; H, 7.0; Cl, 10.3; N, 1.3%.

[4-Bu'C₆H₄CH₂P(Ph)₂NHSiMe₃]₂[Zr₂Cl₁₀] 13. A mixture of compound 9 (1.00 g, 2.38 mmol) and ZrCl₄ (0.55 g, 2.38 mmol) in 30 cm³ of dichloromethane was heated to reflux for 5 h. After reducing the solvent volume to 5 cm³ the solution was cooled to 4 °C for three days to give colourless crystals of 13, yield 0.65 g

(0.47 mmol, 39%). 1 H NMR (thf- d_{8} , 20 °C): δ 0.06 (s, 9H, SiMe₃), 1.25 (s, 9H, CMe₃), 4.04 (br, 2H, CH₂), 4.99 (br, 1H, NH) and 6.97–7.84 (m, 14H, aryl). 13 C-{ 1 H} NMR (thf- d_{8} , 20 °C): δ 2.55 (s, 3C, SiMe₃), 31.00 (s, C Me_{3}), 32.92 (d, $J_{\rm CP}$ = 60.1 Hz, CH₂), 36.64 (s, CMe₃) and 121.82–151.14 (aryl). 31 P NMR (thf- d_{8} , 20 °C): δ 40.4. Calc. for C₂₆H₃₅Cl₅NPSiZr: C, 45.3; H, 5.2; Cl, 25.0; N, 20%. Found: C, 45.2; H, 5.2; Cl, 26.2; N, 1.9%. The mother liquor showed an additional peak in the 31 P NMR spectrum at δ 31.45 (see text).

ZrCl₃{4-**Bu**¹C₆H₄CHP(Ph)₂=NSiMe₃} 14. Following the procedure described for 10, the compound was prepared from 9 (1.5 g, 3.57 mmol) BuⁿLi (2.23 cm³, 3.57 mmol), and ZrCl₄ (0.83 g, 3.57 mmol). ¹H NMR (CD₂Cl₂, 20 °C): δ 0.38 (s, 9H, SiMe₃), 1.31(s, 9H, CMe₃), 3.39 (d, $J_{\rm HP}$ = 13.3 Hz, 1H, CH) and 6.92–7.65 (m, 14H, Ph). Major ³¹P NMR (CD₂Cl₂, 20 °C, 121.49 MHz): δ 31.92. Unidentified by-products were also apparent in the spectra which could not be removed.

X-Ray crystallography

In each case a suitable crystal was coated in an inert perfluoropolyether oil and mounted in a nitrogen stream at 150 K on a Nonius Kappa CCD area-detector diffractometer. Data collection was performed using Mo-K α radiation ($\lambda = 0.71073$ Å) with the CCD detector placed 30 mm from the sample via a mixture of $1^{\circ} \phi$ and ω scans at different θ and κ settings using the program COLLECT.¹⁰ The raw data were processed to produce conventional data using the program DENZO-SMN.¹¹ The datasets were corrected for absorption using the program SORTAV.¹² All structures were solved by heavy-atom methods using SHELXS 97¹³ and refined by full-matrix least squares (on F²) using SHELXL 97. ¹⁴ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were constrained to idealised positions. Crystallographic data for compounds 3, 7, 12 and 13 are summarised in Table 2. Crystals of 3, which also contain a molecule of CH₂Cl₂ solvent per asymmetric unit, proved to be highly efflorescent and were therefore of limited quality. In addition, molecular C_2 crystallographic symmetry introduces a 50:50 disorder into the CH₂CH backbone of the ligand of this structure. Only one of the two positions is shown in Fig. 1. Rigid-bond restraints were applied to the thermal parameters of the carbon atoms involved in the disorder.

CCDC reference numbers 154069-154072.

See http://www.rsc.org/suppdata/dt/b0/b0090820/ for crystallographic data in CIF or other electronic format.

Acknowledgements

This work was supported by BP Amoco Chemicals Ltd., Sunbury, and the Engineering and Physical Sciences Research Council.

References

- Reviews: K. Dehnicke, M. Krieger and W. Massa, *Coord. Chem. Rev.*, 1999, **182**, 19; K. Dehnicke and F. Weller, *Coord. Chem. Rev.*, 1997, **158**, 103.
- 2 D. W. Stephan, J. C. Steward, F. Guérin, R. E. v. H. Spence, W. Xu and D. G. Harrison, *Organometallics*, 1999, 18, 1116; D. W. Stephan, F. Guérin, R. E. v. H. Spence, L. Koch, X. Gao, S. J. Brown, J. W. Swabey, Q. Wang, W. Xu, P. Zoricak and D. G. Harrison, *Organometallics*, 1999, 18, 2046; C. A. Carraz and D. W. Stephan, *Organometallics*, 2000, 19, 3791.
- 3 M. Grün, F. Weller and K. Dehnicke, Z. Anorg. Allg. Chem., 1997, 623, 224; C. M. Ong, P. McKarns and D. W. Stephan, Organometallics, 1999, 18, 4197.
- 4 S. Al-Benna, M. J. Sarsfield, M. Thornton-Pett, D. L. Ormsby, P. J. Maddox, P. Brès and M. Bochmann, *J. Chem. Soc.*, *Dalton Trans.*, 2000, 4247.
- 5 M. J. Sarsfield, M. Thornton-Pett and M. Bochmann, *J. Chem. Soc.*, *Dalton Trans.*, 1999, 3329.
- 6 I. A. Latham, G. J. Leigh and G. Huttner, J. Chem. Soc., Dalton Trans., 1986, 377. For related titanium phosphinimido complexes as bidentate ligands see also: K. V. Katti and R. G. Cavell, Inorg. Chem., 1989, 28, 413; K. V. Katti and R. G. Cavell, Organometallics, 1991, 10, 539.
- 7 J. Eicher, U. Müller and K. Dehnicke, Z. Anorg. Allg. Chem., 1985, 521, 37; F. Calderazzo, P. Pallavicini, G. Pampaloni and P. F. Zanazzi, J. Chem. Soc., Dalton Trans., 1990, 2743; S. J. Coles, M. B. Hursthouse, D. G. Kelly and N. M. Walker, Acta Crystallogr., Sect. C, 1999, 55, 1789.
- 8 G. Hidalgo-Llinás, M. Mena, F. Palacios, P. Royo and R. Serrano, J. Organomet. Chem., 1988, 340, 37.
- 9 R. Appel and I. Ruppert, Z. Anorg. Allg. Chem., 1974, 406, 131.
- 10 COLLECT, data collection software, Nonius B. V., Delft, 1999. 11 Z. Otwinowski and W. Minor, *Methods Enzymol.*, 1996, **276**,
- 12 R. H. Blessing, Acta Crystallogr., Sect. A, 1995, 51, 33.
- 13 G. M. Sheldrick, *Acta Crystallogr.*, *Sect. A*, 1990, **46**, 467.
- 14 G. M. Sheldrick, SHELXL 97, Program for crystal structure refinement, University of Göttingen, 1997.